分数微积分:将理论与计算和当代进展联系起来
Fractional Calculus: Bridging Theory with Computational and Contemporary Advances is an authoritative and comprehensive guide that delves into the world of fractional calculus, offering a unique blend of theoretical foundations, numerical algorithms, practical applications, and innovative perspectives. This book explores the mathematical framework of fractional calculus and its relevance across various disciplines, providing readers with a deep understanding of this rapidly growing field. The author presents a rigorous yet accessible approach to fractional calculus, making it suitable for mathematicians, researchers, academics, graduate students, and professionals in engineering and applied sciences. The book covers a wide range of topics, including numerical methods for fractional calculus equations, fractional differential equations, fractal dynamics, and fractional control systems. It also explores applications in areas such as physics, engineering, signal processing, and data analysis. Fractional Calculus: Bridging Theory with Computational and Contemporary Advances equips readers with the necessary tools to tackle challenging problems involving fractional calculus, empowering them to apply these techniques in their research, professional work, or academic pursuits. The book provides a comprehensive introduction to the fundamentals of fractional calculus, explaining the theoretical concepts and key definitions in a clear and accessible manner. This helps readers build a strong foundation in the subject. The book then covers a range of numerical algorithms specifically designed for fractional calculus problems, explaining the underlying principles, step-by-step implementation, and computational aspects of these algorithms. This enables readers to apply numerical techniques to solve fractional calculus problems effectively. The book also provides examples that illustrate how fractional calculus is applied to solve real-world problems, providing readers with insights into the wide-ranging applications of the subject. Provides a comprehensive introduction to the fundamentals of fractional calculus, explaining the theoretical concepts and key definitions in a clear and accessible manner Covers a range of numerical algorithms specifically designed for fractional calculus problems Includes practical examples and case studies from various fields such as physics, biology, finance, and signal processing
中文| 2024 | ISBN:97804335015 | 250页| EPUB | 59 MB《分数微积分:将理论与计算和当代进步联系起来》是一本权威而全面的指南,深入研究分数微积分世界,提供了理论基础、数值算法、实际应用和创新观点的独特融合。本书探讨了分数阶微积分的数学框架及其在各个学科中的相关性,为读者提供了对这一快速发展领域的深刻理解。作者提出了一种严谨但易于理解的分数阶微积分方法,使其适用于数学家、研究人员、学者、研究生以及工程和应用科学领域的专业人士。这本书涵盖了广泛的主题,包括分数阶微积分方程的数值方法、分数阶微分方程、分形动力学和分数阶控制系统。它还探索了物理、工程、信号处理和数据分析等领域的应用。分数微积分:将理论与计算和当代进步联系起来,为读者提供必要的工具来解决涉及分数微积分的挑战性问题,使他们能够在研究、专业工作或学术追求中应用这些技术。本书全面介绍了分数阶微积分的基本原理,以清晰易懂的方式解释了理论概念和关键定义。这有助于读者在这个主题上打下坚实的基础。然后,这本书涵盖了一系列专门为分数阶微积分问题设计的数值算法,解释了这些算法的基本原理、逐步实现和计算方面。这使读者能够应用数值技术有效地解决分数阶微积分问题。这本书还提供了一些例子,说明分数微积分是如何应用于解决现实世界的问题的,为读者提供了对该学科广泛应用的见解。全面介绍分数阶微积分的基本原理,以清晰易懂的方式解释理论概念和关键定义。涵盖了一系列专门为分数阶微积分问题设计的数值算法。包括来自物理、生物学、金融和信号处理等各个领域的实际示例和案例研究本站不对文件进行储存,仅提供文件链接,请自行下载,本站不对文件内容负责,请自行判断文件是否安全,如发现文件有侵权行为,请联系管理员删除。
Flux - Jinwoo Chong
La montagna e il mio mondo
La ricchezza che il denaro non ti puo dare
Tabbner's Nursing Care: Theory and Practice, 7th Edition
Small Animal Surgery, 4th Edition
Musculoskeletal Examination and Assessment: A Handbook for Therapists, 5th Edition
Perioperative Nursing: An Introduction, 2nd Edition
La legge delle colline
Quattro re. Leonard, Hagler, Hearns, Duran e l'ultima grande era della boxe
Fra gli ultras. Viaggio nel tifo estremo