Elixir中的机器学习
Stable Diffusion, ChatGPT, Whisper - these are just a few examples of incredible applications powered by developments in machine learning. Despite the ubiquity of machine learning applications running in production, there are only a few viable language choices for data science and machine learning tasks. Elixir's Nx project seeks to change that. With Nx, you can leverage the power of machine learning in your applications, using the battle-tested Erlang VM in a pragmatic language like Elixir. In this book, you'll learn how to leverage Elixir and the Nx ecosystem to solve real-world problems in computer vision, natural language processing, and more.
The Elixir Nx project aims to make machine learning possible without the need to leave Elixir for solutions in other languages. And even if concepts like linear models and logistic regression are new to you, you'll be using them and much more to solve real-world problems in no time.
Start with the basics of the Nx programming paradigm - how it differs from the Elixir programming style you're used to and how it enables you to write machine learning algorithms. Use your understanding of this paradigm to implement foundational machine learning algorithms from scratch. Go deeper and discover the power of deep learning with Axon. Unlock the power of Elixir and learn how to build and deploy machine learning models and pipelines anywhere. Learn how to analyze, visualize, and explain your data and models.
Discover how to use machine learning to solve diverse problems from image recognition to content recommendation - all in your favorite programming language.
What You Need
You'll need a computer with a working installation of Elixir v1.12 and Erlang/OTP 24. For some of the more compute intensive examples, you'll want to use EXLA, which currently only supports x86-64 platforms. While not explicitly required, some examples will demonstrate programs running on accelerators such as CUDA/ROCm enabled GPUs and Google TPUs. Most of these programs will still run fine on a regular CPU, just for much longer periods of time.
中文|2024|ISBN:9798888651254|374页|EPUB|6.73 MB稳定扩散、ChatGPT、Whisper——这些只是机器学习发展所驱动的令人难以置信的应用程序的几个例子。尽管机器学习应用程序在生产环境中无处不在,但数据科学和机器学习任务只有少数可行的语言选择。Elixir的Nx项目试图改变这一点。使用Nx,您可以在应用程序中利用机器学习的强大功能,在Elixir等实用语言中使用经过实战考验的Erlang VM。在本书中,您将学习如何利用Elixir和Nx生态系统来解决计算机视觉、自然语言处理等领域的现实问题。 Elixir Nx项目旨在使机器学习成为可能,而无需离开Elixir去寻找其他语言的解决方案。即使线性模型和逻辑回归等概念对你来说是新的,你也会很快使用它们和更多的东西来解决现实世界的问题。 从Nx编程范式的基础知识开始——它与您习惯的Elixir编程风格有何不同,以及它如何使您能够编写机器学习算法。利用你对这一范式的理解,从头开始实现基础机器学习算法。深入了解Axon,发现深度学习的力量。解锁Elixir的强大功能,学习如何在任何地方构建和部署机器学习模型和管道。学习如何分析、可视化和解释您的数据和模型。 了解如何使用机器学习来解决从图像识别到内容推荐的各种问题——所有这些都是用你最喜欢的编程语言完成的。 您需要什么 您需要一台安装了Elixir v1.12和Erlang/OTP 24的计算机。对于一些计算密集型的示例,您需要使用EXLA,它目前只支持x86-64平台。虽然没有明确要求,但一些示例将演示在CUDA/ROCm启用的GPU和Google TPU等加速器上运行的程序。这些程序中的大多数在常规CPU上仍能正常运行,只是运行时间要长得多。本站不对文件进行储存,仅提供文件链接,请自行下载,本站不对文件内容负责,请自行判断文件是否安全,如发现文件有侵权行为,请联系管理员删除。
Flux - Jinwoo Chong
La montagna e il mio mondo
La ricchezza che il denaro non ti puo dare
Tabbner's Nursing Care: Theory and Practice, 7th Edition
Small Animal Surgery, 4th Edition
Musculoskeletal Examination and Assessment: A Handbook for Therapists, 5th Edition
Perioperative Nursing: An Introduction, 2nd Edition
La legge delle colline
Quattro re. Leonard, Hagler, Hearns, Duran e l'ultima grande era della boxe
Fra gli ultras. Viaggio nel tifo estremo