大卫·希尔伯特的《基础物理学讲义》(1915-1927):相对论、量子理论与认识论
Volume 5 has three parts, dealing with General Relativity, Epistemological Issues, and Quantum Mechanics. The core of the first part is Hilbert’s two semester lecture course on ‘The Foundations of Physics’ (1916/17). This is framed by Hilbert’s published ‘First and Second Communications’ on the ‘Foundations of Physics’ (1915, 1917) and by a selection of documents dealing with more specific topics like ‘The Principle of Causality’ or a lecture on the new concepts of space and time held in Bucharest in 1918. The epistemological issues concern the intricate relation between nature and mathematical knowledge, in particular the question of irreversibility and objectivity (1921) as well as the subtle question whether what Hilbert calls the ‘world equations’ are physically complete (1923). The last part deals with quantum theory in its early, advanced and mature stages. Hilbert held lecture courses on the mathematical foundations of quantum theory twice, before and after the breakthrough in 1926. These documents bear witness to one of the most dramatic changes in the foundations of science.
第五卷包含三个部分,分别涉及广义相对论、认识论问题和量子力学。第一部分的核心是希尔伯特于1916/17学年开设的“物理学基础”课程(《物理学的基础》),该课程的内容受到希尔伯特发表的关于“物理学基础”的两篇文章的影响(1915, 1917)以及一些与具体主题相关的文件,如“因果性原则”,或他在1918年布加勒斯特讲授的新概念时空观。认识论问题关注自然与数学知识之间的复杂关系,特别是关于不可逆性和客观性的疑问(1921),以及希尔伯特所说的“世界方程”是否物理上完备的问题(1923)。最后一部分探讨了量子理论的早期、先进和成熟阶段。在1926年突破之前,希尔伯特曾在1926年前后两次举办过关于量子理论数学基础的讲座课程。这些文件见证了科学基础方面最为戏剧性的变化之一。
本站不对文件进行储存,仅提供文件链接,请自行下载,本站不对文件内容负责,请自行判断文件是否安全,如发现文件有侵权行为,请联系管理员删除。
Wireless Communications for Power Substations: RF Characterization and Modeling
Projective Geometry: Solved Problems and Theory Review (True PDF,EPUB)
Kingship and Government in Pre-Conquest England c.500–1066
Numerical Algorithms with C
Mathematical Modelling Skills
The Art of Encouragement: How to Lead Teams, Spread Love, and Serve from the Heart (True PDF)
Principles of Cybersecurity
React in Depth (True/Retail EPUB)
The Complete Obsolete Guide to Generative AI (True/Retail EPUB)
IT-Forensik: Ein Grundkurs